Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy.
نویسندگان
چکیده
The growth of large-area bilayer graphene has been of technological importance for graphene electronics. The successful application of graphene bilayers critically relies on the precise control of the stacking orientation, which determines both electronic and vibrational properties of the bilayer system. Toward this goal, an effective characterization method is critically needed to allow researchers to easily distinguish the bilayer stacking orientation (i.e., AB stacked or turbostratic). In this work, we developed such a method to provide facile identification of the stacking orientation by isotope labeling. Raman spectroscopy of these isotopically labeled bilayer samples shows a clear signature associated with AB stacking between layers, enabling rapid differentiation between turbostratic and AB-stacked bilayer regions. Using this method, we were able to characterize the stacking orientation in bilayer graphene grown through Low Pressure Chemical Vapor Deposition (LPCVD) with enclosed Cu foils, achieving almost 70% AB-stacked bilayer graphene. Furthermore, by combining surface sensitive fluorination with such hybrid (12)C/(13)C bilayer samples, we are able to identify that the second layer grows underneath the first-grown layer, which is similar to a recently reported observation.
منابع مشابه
Bilayer Graphene Growth by Low Pressure Chemical Vapor Deposition
Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer graphene on the outside surface of copper enclosures. The effect of several parameters on bilayer growth rate and domain size was investigated and high-coverage bilayers films...
متن کاملControllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition
Bilayer graphene has attracted wide attention due to its unique band structure and bandgap tunability under specific (Bernal or AB) stacking order. However, it remains challenging to tailor the stacking order and to simultaneously produce large-scale and high-quality bilayer graphene. This work introduces a fast and reliable method of growing high-quality Bernal stacked large-area (>3 in. × 3 i...
متن کاملLayer-by-layer synthesis of large-area graphene films by thermal cracker enhanced gas source molecular beam epitaxy
A thermal cracker enhanced gas source molecular beam epitaxy system was used to synthesize large-area graphene. Hydrocarbon gas molecules were broken by thermal cracker at very high temperature of 1200 C and then impinged on a nickel substrate. High-quality, large-area graphene films were achieved at 800 C, and this was confirmed by both Raman spectroscopy and transmission electron microscopy. ...
متن کاملMicro-Raman analysis of the influence of hydrogen intercalation on the epitaxial graphene grown on 4H-SiC(0001) substrate K.Grodecki
It is commonly accepted that properties of epitaxial graphene (EG) grown on SiC are determined by interaction with substrate. It was found, that hydrogen intercalation of EG grown on SiC(0001) substrates by sublimation is a promising method to increase the mobility of carriers [1]. As verified by Raman spectroscopy [2] sublimation grown samples show much stronger interaction with the SiC substr...
متن کاملTwisting bilayer graphene superlattices.
Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2013